PLANE COORDINATES CALCULATED FROM GEOGRAPHIC POSITION OF

STATION"SPINDLE TOP"

Latitude 30° 02' 11".077 Longitude 94° 03' 36".169

Zone-South Central

-TEXAS-

(1) R for Latitude 30° 02' (From tables	s) =	37,007,525.14 Ft.
<pre>(1) R for Latitude 30⁰ 02' (From tables (2) 11".077 times one second, (tabular 101.01533)</pre>	dlII., =	<u> </u>
(3) R. For Station	R =	37,006,406.19 Ft.
(4) Theta angle for Longitude 94° 03' (5) 36".169 times constant 0.48991264	= 2° 25' 30".2433 = <u> </u>	
(6) Theta angle for station	= ≠ 2° 25' 12".5237	
(7) Sine Theta	04222 69475	
$\binom{8}{9} \times = R \text{ Sine Theta } \neq C$ $\binom{9}{C} \text{ is value of X assigned to Centra}$	= = 1 Meridian =	1,562,667.57 Ft. 2,000,000.00 Ft.
(10) X For Station (11) Cosine Theta	x = .99910 80450	3,562.667.57 Ft.
(12) Y = R _b - R Cosine Theta		
(13) R _b (origin) (14) R times Cosine Theta	=	37,807,440.38 Ft. 36,973,398.13 Ft.
(15) Y For Station	¥ =	834,042.25 Ft.

REQUIRED: A copy of "Plane coordinate Projection Tables" Texas Lambert G-141.

FROM: Director, U. S. Coast & Geodetic Survey Washington 25, D. C.

Ten place sine and cosine tables.

PLANE COORDINATES CALCULATED FROM GEOGRAPHIC POSITION OF

STATION"SPINDLE TOP"

Latitude 30° 02' 11".077 Longitude 94° 03' 36".169

Cor > +

Zone-South Central

-TEXAS-

<pre>(1) R for Latitude 30° 02' (From tables) = (2) 11".077 times one second, (tabular diff.,</pre>	37,007,525.14 Ft.
101.01533) =	<u>- 1,118.95 Ft.</u>
(3) R. For Station R =	37,006,406.19 Pt.
(4) Theta angle for Longitude 94° 03! = 2° 25' 30".2433 (5) 36".169 times constant 0.48991264 =77.7196	
(6) Theta angle for station $= 42^{\circ} 25' 12''.5237$	
(7) Sine Theta = .04222 69475	
$ \begin{cases} 8 \\ 9 \end{cases} X = R Sine Theta \neq C \\ 9 \end{cases} C is value of X assigned to Central Meridian = $	1,562,667.57 Ft. 2,000,000.00 Ft.
(10) X For Station X = (11) Cosine Theta : .99910 80450	3,562.667.57 Ft.
(12) Y = R _b - R Cosine Theta	
(13) Rb (origin) = (14) R times Cosine Theta =	37,807,440.38 Ft. 36,973,398.13 Ft.
(15) Y For Station Y =	834,042.25 Ft.

REQUIRED: A copy of "Plane coordinate Projection Tables" Texas Lambert G-141.

FROM: Director, U. S. Coast & Geodetic Survey Washington 25, D. C.

Ten place sine and cosine tables.

GEOGRAPHIC POSITIONS FROM LAMBERT COORDINATES STATE - ZONE TEXAS SOUTH CENTRAL U. S. COAST AND GEODETIC STATION TATLUM 1933, X=3,230,063.81' Y = 463, 18¥.37 Constant & = 0".48991264

	K	1)
C	- 2000,000	Rb = 37,807,440.38
Х	3,230,063.81	¥ 463,180.37
X' = X - C	= 1,230,063.81	$R_{b} - Y = = 37,344,260.01$
Tan $\Theta = X' \div (R_b - Y)$	∋ .03293 84973	θ = 6791".597
θ • • ~ ~ .	= 1° 53' 11".597	$\Delta \Lambda = 0 - 1$ = 1386".2874
COS 0	== 99945 79685	ΔX = 3° 51' 02".874
$R=(R_b - Y) \div \cos \theta$	== 37,364,512.70	Central Meridian $=99^{\circ}$ 00' 00".000
Ø Ť	= 29° 03' 05".537	$\lambda = CM - \Delta \lambda = 95^{\circ} 08' 57''.126$

.10

$\begin{array}{c} R_{b} \text{ (origin)} = 37,80 \\ Y = 46 \\ R_{b} - Y = 37,34 \\ \hline 0.000 \\ 0.0$	7.440.38 3,180.37 4,260.01 5 79685 4,512.70 5,071.94 = 29° 03' \neq
	ne second = $\frac{559.24}{100.99}$ = $05".537$
$\Delta \lambda = 6791."597 \div$ $\div 60 = 23.1047900 \div$ (or $\div 3600$)	0.48991264 = 1386."2874) - 60 = 3° 85079833 - x 60
	51 ° 0478998 <u>x 60</u>
	2".873988
	$\Delta \lambda = 3^{\circ} 51' 02".874$

101

20

74233

General Land Office

State of Texas

BASCOM GILES, COMMISSIONER DENNIS WALLACE, CHIEF CLERK **Austin** 14 July 13, 1954

OFFICE MEMO

TO

MR. WILLIAM SHIRRIFFS

As requested, I have examined the General Land Office Map showing St. Charles, Aransas and Red Fish Bays State Tracts. It is noted that the U. S. C. & G. S. Station Lamar 1931 was adopted for the origin of these tracts.

The original map was drawn before the General Land Office had adopted the Texas coordinate system. In its caption, it was stated that all lines are parallel to or perpendicular to a true North line through Station Lamar, and all tracts are one mile North and South, one-half mile East and West. The map was redrawn and dated December 15, 1949, and coordinates adopted for State tracts. The published coordinates for Station Lamar are:

> x = 2,647,179.04 feet y = 115,219.73 feet

converted into varas

x = 952,984.45 varas y = 41,479.10 varas

The longitude of Lamar is 96° 59' 31".694. The mapping angle computed = 0° 59' 01".2385. The grid bearing of tract lines are S 0° 59' 01".2385 East 1900.8 varas or a right angle to this line S 89° 00' 58".7615 West 1900.8 varas. The scale factor for computation on Lämbert grid distances was not applied, hence all distances remain as originally stated.

Respectfully submitted,

74234

Curtis R. Hale

64 NO CURRENT MISCH INFOR84 PLANE COORDINATES CALCULATED FROM GEOGRAPHIC POSITION OF "SPINDLE, TOP"